
Enquête de lecture Encart
Introduction1
Les régiments d'infanterie écossais au service de la France, 1742-1762
par Helen C. McCorry (G.-B.) du Scottish United Service Museum traduit par le colonel Robert Travaillot 2
Soldats et prostituées : un couple indissociable dans la société de Louix XIV par Nadine Roger, docteur en Histoire 19
Un Vauban méconnu, le général Séré de Rivières par Jean Morin 24
Michelin et l'aviation:de I'aéro-cible au Breguet-Michelin XIV B2, I'avion de la victoire 1896-1919par le capitaine Antoine Champeaux du S.H.A.T.33
La fraternité d'armes polono-française 1914-1921
par Piotr Stawecki (Pologne) de l'Académie de la Défense nationale à Varsovie 45
Le colonel de Gaulle à Metz
par Marina Arzakanian (Russie) de l'Institut universel de l'Académie des sciences à Moscou 55
Le rôle des aviateurs militaires français dans le défrichement des lignes aériennes dans les années vingt et le début des années trente par François Pernot du S.H.A.A. 65
Organisation des systèmes de radionavigation de la Luftwaffe en Normandie en 1944 par le colonel (E.R.) Jean-François Salles 78
L'armée de l'Air et Hoa Binh
par Alexander Zervoudakis (G.-B) du King's College London, War State Department traduit par Bernard Pouget 88
Un établissement de la Marine à deux mille trois cents kilomètres de la mer : la caserne Odent à Tchong-King
par le contre-amiral (C.R.) Bernard Estival 98
L'intervention navale alliée en Lettonie, octobre-novembre 1919, I'exemple d'une collaboration franco-britannique par le matelot Ludovic Chevutschi du S.H.M. 105
L'enseignement interarmées à l'Ecole de guerre navale avant la Seconde Guerre mondiale par le contre-amiral (C.R.) Rémi Monaque 117
Chroniques : 123
Traditions et symbolique militaires:
Terre : par l'adjudant-chef Gervais Cadario du S.H.A.T. 136
Air: par le lieutenant-colonel Danielle Lagouarde du S.H.A.A. 140
Mer: par le lieutenant de vaisseau Bruno Morizur du S.H.M. 142

Organisation des systèmes de radionavigation de la Luftwaffe en Normandie en 1944

Colonel Jean-François SALLES

Emetteur Knickebein (jambe pliée) Fusan 721 à Beaumont-Hague à l'ouest de Cherbourg

Dans un effort de réarmement, l'Allemagne d'Hitler s'engage très vite vers la création d'une armée de l'Air résolument moderne, la Luftwaffe. Les doctrines d'emploi privilégièrent d'emblée l'offensive aérienne. Appliquant les principes retenus par le théoricien italien Douhet, les responsables militaires s'attachèrent à conférer à la jeune armée de l'Air, symbole du régime, des capacités d'intervention par tous les temps. Nous entendons par là, l'aptitude à accomplir des missions de combat, de jour, de nuit et par des conditions météorologiques défavorables, ce qui était révolutionnaire à cette époque.

Ces principes établis conditionnant des choix techniques, tout fut mis en œuvre avec dynamisme et compétence pour arriver au but fixé, création de bureaux d'études chargés de trouver des applications militaires à la recherche, exploitation systématique des technologies nouvelles par l'industrie, crédits illimités, rien ne
fut négligé. C'est dans cette optique que nous allons aborder l'étude de plusieurs générations de systèmes de radioguidage qui permirent à la Luftwaffe d'accomplir un choix de missions opérationnelles dites tout temps au-dessus du territoire de l'adversaire potentiel. S'agissant du bombardement stratégique, mission offensive par excellence, les techniques retenues pour le guidage par radio s'inspirèrent largement des solutions utilisées par l'aviation civile et commerciale du III ${ }^{e}$ Reich. Il n'est pas inutile de rappeler que la Lufthansa, la compagnie aérienne nationale, était en 1937 la première compagnie aérienne en Europe tant par le volume de son trafic que par la régularité de ses vols. Les premiers systèmes de radioguidage à distance, adoptés par la Luftwaffe, seront issus des faisceaux de Lorenz utilisés couramment en 1937 par l'aviation civile allemande. Le premier système de radioguidage adopté par la Luftwaffe, Knickebein dérivé d'un système civil, fut opérationnel en 1938. D'autres systèmes à faisceaux
directifs seront inventés et utilisés durant le Blitz qui succéda à la Bataille d'Angleterre. Par la suite la Luftwaffe mit au point des systèmes hyperboliques de radionavigation, des systèmes utilisant les techniques radar qui tous furent implantés en territoires occupés. Il n'est pas question de relater les circonstances passionnantes de leur découverte par les Alliés et de leur neutralisation. Nous nous limiterons à en rappeler l'existence lors des combats de 1944 en Normandie ; sans entrer dans les détails techniques nous tenterons de démontrer l'importance de la menace que cette infrastructure électronique de combat représentait à cette époque.

Les systèmes à faisceaux dirigés jusqu'en 1941

Knickebein ou système K

La Luftwaffe disposait dès le début des hostilités d'un système de radionavigation à distance lui permettant de diriger ses bombardiers, de nuit ou par temps défavorable, sur des objectifs ponctuels (complexes industriels, bases navales etc.). Il s'agissait d'obtenir un point précis, coïncidant avec l'objectif à traiter, au point de convergence de deux faisceaux d'ondes ; en navigation aérienne ces deux faisceaux d'ondes s'apparentent à deux lignes de position qui se croisent en un point unique, ce peutêtre un point tournant d'itinéraire ou bien un objectif. Cette méthode dite des faisceaux directifs constitue le premier système ou Knickebein, mis au point à Rechlin, un important centre d'essais allemand, en 1938.

Principe du faisceau de Lorenz
© droits réservés

Principe de l'émission

Les faisceaux de Lorenz étaient utilisés par l'aviation civile en Allemagne dès 1937 et sur certains aéroports internationaux à l'étranger, notamment sur celui de Londres Croydon. Ces faisceaux permettaient aux pilotes de ligne d'effectuer des atterrissages par visibilité réduite. Quel en était le principe? Sil'on dispose des antennes simples, bipoles, selon des intervalles égaux à la longueur des antennes, formant une sorte de barrière de passage à niveau, l'ensemble émet un faisceau perpendiculaire d'ondes dirigées dont la particularité est d'être d'autant plus étroit que la barrière est longue. Toutefois cette caractéristique présente un grave inconvénient pour obtenir un faisceau large d'un kilomètre à deux cents kilomètres de distance du point d'émission, il faut dresser une barrière si longue que l'expérience devient irréaliste. Il y a un moyen de tourner la difficulté et qui fut à la base des faisceaux de Lorenz, c'est qu'au lieu d'utiliser une antenne unique allongée au maximum, on en utilise deux relativement courtes, émettant à tour de rôle dans des directions légèrement divergentes de sorte que les faisceaux engendrés se recouvrent en partie (voir schéma, iconographie). La première antenne émet à intervalles réguliers des signaux longs (traits), la seconde selon les mêmes intervalles émet des signaux courts (points). Un appareil volant à l'intérieur du faisceau 1 reçoit des signaux courts, mais s'il vole dans la zone balayée alternativement par les deux faisceaux, il reçoit un signal continu (trait-point-traitpoint) et continue à le recevoir tant qu'il vole dans la bonne direction. Comme la largeur de cette zone est indépendante de celle des faisceaux 1 et 2 (elle peut à volonté n'en représenter qu'une faible partie), elle constitue un excellent moyen de guidage à distance. Tant qu'il reçoit un signal continu, le pilote est assuré de suivre une route définie. Son objectif, ou son point tournant, lui est signalé avant qu'il l'atteigne par un second signal (des lettres codées en Morse) émis par un autre émetteur qui se superpose au signal continu.

Les fréquences d'émission utilisées par la Luftwaffe étaient régulières, 0 puis 31,5 et 33,3 MHz . Ce système était utilisable par n'importe quel équipage de bombardier pourvu qu'il disposât d'un simple récepteur accordable à la fréquence choisie. Sans être d'une grande précision il offrait la possibilité d'une grande facilité d'utilisation. Dans son livre extraordinaire The most secret war, R. V. Jones, alors chef du Service de renseignement scientifique de la RAF, raconte ses démêlés avec la Luftwaffe et en particulier ce singulier combat qu'il appelle la guerre des faisceaux. R. V. Jones eut l'intuition que les chiffres
fournis dans les messages opérations chiffrés par Enigma, décryptés par les Britanniques, correspondaient à des fréquences que les équipages devaient afficher. Par excès de confiance, le commandement de la Luftwaffe avait commis l'erreur de diffuser les ordres opérationnels par radiotélégraphie. R. V. Jones avoue qu'il s'avança beaucoup, lorsqu'au cours d'une mémorable réunion au plus haut niveau le 21 juin 1940 il entreprit de révéler l'existence de ce moyen de radionavigation au Premier ministre. C'était un pari audacieux mais il fut gagné car l'existence des faisceaux Knickebein fut confirmée par la RAF à l'issue des premières missions de reconnaissance électronique. Les faisceaux portaient à 250 kilomètres et leur largeur n'était que de 600 mètres.

Parade à trouver- Première contre-mesure

Pour aussi élégantes, intellectuellement parlant, que furent la découverte et la mise en évidence de Knickebein par les Britanniques, le problème n'était pas résolu, d'autant plus qu'en cet automne de 1940 la RAF ne disposait que de très faibles moyens pour intercepter de nuit les bombardiers ennemis. Pour la RAF il y avait trois possibilités :

- bombarder les stations émettrices Knickebein situées, au sud de Cherbourg, dans le Cotentin, était peu efficace et de plus on avertissait l'adversaire qu'on avait repéré les faisceaux et les stations, solution sans avenir donc à rejeter ; - brouiller les faisceaux en perturbant gravement les émissions, était déjà plus subtile mais ce genre d'intervention ne marche qu'une seule fois;
- brouiller avec beaucoup de finesse un des faisceaux dans sa fin de parcours de manière à laisser supposer à l'adversaire que son système n'est pas parfait, loin de là ; le faire douter de la fiabilité de ce moyen de guidage en provoquant des aventures fâcheuses, rendre Knickebein peu crédible en raison d'aléas inacceptables en opérations, tout cela entre dans le cadre d'une manœuvre de guerre électronique (W. Churchill l'appelait la guerre des sorciers), cela s'appelle la déception. La Luftwaffe fut assez déçue et nous verrons comment et pourquoi, car c'est bien cette solution qui fut choisie par la RAF ; le Service de renseignement scientifique conçut, pour Knickebein et les autres systèmes, toute une série de contre-mesures efficaces.

Nota: on trouvera, en annexe, la liste des différentes stations du système Knickebein, lequel restera opérationnel, avec des restrictions, jusqu'en 1942.

Photographie aérienne de l'émetteur Knickebein prise par la Royal Air Force à Beaumont-Hague en septembre 1940
© droits réservés

Wotan I ou X-Gerät

Dès septembre 1940, le Service de recherche scientifique de la RAF acquit la certitude que la Luftwaffe utilisait un système de radionavigation très spécial appelé X-Gerät ou Wotan I. Beaucoup de spécialistes du Service pensaient que Knickebein et X-Gerät n'étaient qu'un seul et même système. Le Service des écoutes du trafic radio ennemi avait localisé l'utilisation de X-Gerät au sein d'une formation unique le KGr 100 (groupe de bombardement $\mathrm{n}^{\circ} 100$) basé à Vannes. Ce groupe de bombardement avait pour mission de marquer les objectifs pour le compte des autres groupes, lesquels utilisaient Knickebein. Le KGr 100 devait disposer d'un

Emetteur Wotan I du système X-Gerät et Heinkel III équipé d'une antenne X
© droits réservés
système de radionavigation encore plus précis, c'était précisément le cas avec X-Gerät.

Complémentaire de Knickebein, X-Gerät utilisait le même principe de faisceaux d'ondes dirigés mais il faisait mieux et surtout plus. Il était à la fois un moyen de navigation et un système de bombardement automatique. A partir d'une station émettrice principale située dans le Cotentin, imaginons un faisceau directif très fin visant un complexe industriel en Angleterre. Le faisceau principal était intercepté trois fois, respectivement à 30 kilomètres, 20 kilomètres et 5 kilomètres de l'objectif, par trois faisceaux de flanquement qui déterminaient trois lignes de positions (schéma et photos, iconographie). Les avions du KGr 100 basés à Vannes décollaient de nuit et se dirigeaient vers Cherbourg, en tête d'une vague de bombardiers qui se suivaient en direction du même objectif à quelques minutes d'intervalle. A partir du Cap de la Hague, les avions du KGr 100 recevaient le signal de la station X-Gerät principale et suivaient le faisceau qui les conduisait sur l'objectif. Au repère 50 kilomètres (premier faisceau de flanquement),

Faisceaux Knickebein et X-Gerät utilisés respectivement pour les bombardements de Derby les 21 et 22 juin et de Coventry les 14 et 15 novembre 1940
(c) droits réservés

Principe de fonctionnement des systèmes Knickebein et X-Gerät différenciés par le nombre de faisceaux de flanquements
© droits réservés
le navigateur prenait un top au chronomètre. Au deuxième repère situé à 20 kilomètres, le temps écoulé depuis le premier top permettait d'obtenir la vitesse sol de l'avion et le vent en force et direction à l'altitude du vol, paramètres essentiels pour le bombardement, lesquels étaient intégrés dans un calculateur directement relié au dispositif de largage des bombes. Au point 5 kilomètres, le bombardier enclenchait la séquence du calculateur où étaient intégrées l'altitude, la vitesse de l'avion et la distance connue à 100 mètres près, le largage était automatique. Les résultats étaient remarquablement précis et cette méthode permettait à la Luftwaffe de marquer les objectifs à l'aide de bombes incendiaires colorées visibles des bombardiers suivants qui larguaient leurs chargements sur les marqueurs colorés.

L'émetteur Wotan I fonctionnait dans la bande de 55 à 75 MHz et le faisceau principal avait une portée de 300 kilomètres. Sa largeur ne dépassant pas 200 mètres, il fallait une dextérité étonnante de la part du pilote, lequel devait être particulièrement entraîné. Le récepteur de bord était le FuG 17-X (Funkgerät 17-X, X pour XGerät naturellement) donc modifié par adjonction de filtres ne laissant passer qu'une modulation de 2000 Hz . Le FuG 17 était le modèle courant sur tous les bombardiers allemands, ainsi cette modification passa inaperçue des Britanniques qui ne décelèrent pas cette différence importante sur les épaves des avions abattus, pas plus qu'ils ne découvrirent le calculateur qui permettait le bombardement automatique.

L'opération de mise en œuvre du système XGerät nécessitait une coordination étroite et un synchronisme parfait entre le KGr 100 et les stations émettrices. C'est précisément ce qui permit aux Britanniques de découvrir tout le système. Les ordres d'opérations étaient trans-
mis par messages radiotélégraphiques chiffrés par Enigma, lesquels étaient lus par les services britanniques. Le Service de recherche scientifique ne fut pas long à découvrir les fréquences qui étaient utilisées chaque nuit par X-Gerät (il y en avait quatre pour les quatre faisceaux), ainsi que pour Knickebein et les orientations à donner aux émetteurs et de découvrir bien sûr avec un minimum de logique le positionnement des objectifs. Autrement dit, un très petit nombre de gens en Angleterre connaissait les objectifs qui seraient bombardés avec un préavis de quelques heures. A cette époque la RAF ne disposait d'aucune défense aérienne de nuit capable d'enrayer la menace. Trouver la parade demande du temps et en attendant il fallut se résoudre à ne rien dire aux populations menacées par les raids car en donnant l'alerte les Allemands auraient vite compris que leurs messages étaient décryptés. Cela il ne le fallait à aucun prix. Ce genre de décision ne peut être prise qu'au niveau politique le plus élevé.

Neutralisation par les Britanniques du système Y-Gerät: le signal renvoyé par le bombardier sur $46,9 \mathrm{mc} / \mathrm{s}$ est capté par l'émetteur-récepteur de l'Alexandra Palace et renvoyé au bombardier sur $42,5 \mathrm{mc} / \mathrm{s}$ © droits réservés

Puisqu'on en était à la montée en puissance de la chasse de nuit, il fallut se résoudre à trouver des contre-mesures efficaces, non pas dans le brouillage de barrage mais dans un style très particulier celui de la déception (voir Knickebein). On connaissait donc le principe de fonctionnement de Knickebein baptisé Headache (migraine), également celui de XGerät auquel on donna le nom de Ruffian; toute l'astuce consista à brouiller le faisceau principal de Krickebein et un, voire deux faisceaux de flanquement pour X-Gerät, ce qui empêchait tout bombardement et marquage de précision. Le Service de recherche scientifique de la RAF proposa les contre-mesures Aspirin pour Headache et Bromure pour Ruffian ce qui ne manquait pas d'humour. Cela consista à dévier très doucement les faisceaux, dans un sens ou dans l'autre, de façon à ce que les bombardements, qu'on ne pouvait éviter, se produisent loin des objectifs et des villes mais sans exagérer.

Les campagnes anglaises furent durement touchées, Londres aussi bien sûr, car il était difficile pour les Allemands de manquer un objectif aussi grand. Les aviateurs de la Luftwaffe ne furent pas dupes, les états-majors non plus, mais personne n'osa aller le dire au Reichmarschal Gœring qui dans ce domaine n'aurait pas très bien compris et surtout admis un tel échec. Ainsi pendant plusieurs mois la Luftwaffe s'épuisa-telle sans grande efficacité à poursuivre des raids nocturnes sur l'Angleterre, parfaitement consciente que les systèmes à faisceaux dirigés n'étaient plus fiables.

Wotan II ou Y-Gerät

Le 6 octobre 1940, l'équipe de Bletchley Park, Service chargé de décrypter Enigma, intercepta un message opérations adressé par l'état-major de la Luftflotte-3 à un nouveau destinataire toujours situé dans le Cotentin. Le message affectait un objectif précis en le localisant en coordonnées géographiques. C'était suffisant pour attirer l'attention de l'incontournable Service de recherche scientifique car la

Utilisation opérationnelle des systèmes X et Y-Gerät par la Luftwaffe
© droits réservés

Station Knickebein de Saint-Fiacre, près de Morlaix, du mêrne type que celle de Beaumont-Hague, photographiée en 1946 (c) S.H.M.
procédure était inhabituelle. La pratique des écoutes radio aidant, les Allemands désignaient habituellement une direction d'émission à une station donnée avec l'horaire et la fréquence à utiliser et ceci pour Knickebein comme pour X-Gerät. Les Britanniques pistèrent cette station nouvelle dans le dispositif allemand et découvrirent qu'elle émettait dans la bande de 40 à 50 MHz . C'était encore une nouvelle bande de fréquences, mais ce qui était singulier c'est qu'il n'y avait plus qu'un seul faisceau. Le Service de recherche imagina qu'il s'agissait d'un nouveau moyen n'utilisant qu'un faisceau directeur associé à un système de mesure de distance. C'était effectivement bien pensé, car ce système, appelé Y-Gerät, était un ensemble complet qui regroupait diverses fonctions.

Tout d'abord on y trouvait la fonction radionavigation. L'avion suivait un faisceau dirigé sur l'objectif, faisceau nommé Leitstrall, très étroit, d'une portée de 250 kilomètres, tout à fait semblable à ceux de Knickebein ou de X-Gerät, mais émis dans une bande de fréquences différentes entre 40 et 50 MHz . Là s'arrête l'analogie car les récepteurs de bord FuG 17 et plus tard FuG 28 étaient très différents. Le pilote n'écoutait plus les signaux pour se maintenir sur la route à suivre, donnée par le faisceau; il lisait sur un cadran sa position par rapport à celui-ci. L'avion était positionné en permanence de la manière suivante : la station Wotan II émettait un signal modulé à 42.5 MHz par exemple, l'émetteur-récepteur de bord le recevait, le transformait et le renvoyait sur une fréquence différente ; le temps mis par le signal pour aller et revenir indiquait aux opérateurs de la station à quelle distance se trouvait l'avion sur le faisceau, mais à l'inverse il indiquait à l'équipage de l'avion à quelle distance il se trouvait de la station. Ce système très astucieux permettait une localisation instantanée et pour la station, de connaître en permanence la position d'un raid en cours.

Il y avait également une fonction tactique. Par ce qui précède, on pouvait transmettre à l'avion des informations à caractère tactique puisqu'on lui transmettait déjà une mesure de distance. Ce pouvaient être des ordres, mais également un commentaire de situation aérienne en radiophonie. Dans la station émettrice une table traçante permettait de positionner l'avion équipé Y-Gerät identifié forcément comme ami et par là-même d'établir la situation aérienne amie sans utiliser l'IFF qui procède d'un autre principe d'identification.

Il était prévu également une fonction télécommunications qui permettait à un avion équipé Y-Gerät d'être utilisé en relais au profit d'un avion plus lointain. Y-Gerät avec son émetteur Wotan II (à cause du faisceau unique assimilé à l'œil du dieu Wotan de la mythologie germanique ce qui aida précisément le Service scientifique britannique dans ses investigations) était un ensemble hybride à vocation multifonctions. Sa portée en relais pouvait atteindre 400 kilomètres pour des altitudes de vol comprises entre 5000 et 7000 mètres.

C'était, il faut bien le reconnaître, un système particulièrement élaboré et les Allemands choisirent souvent ce genre d'architecture de sys-

Implantation des systèmes à faisceaux Knickebein, X et Y Gerät et autres moyens de radionavigation sur la côte de la Manche
© droits réservés
tèmes. Il y avait cependant un très grave défaut de conception lequel révélait un excès de confiance dans les capacités allemandes et partant de là une sous-estimation de l'adversaire. En effet les signaux renvoyés par l'avion n'étaient pas seulement reçus par la station émettrice, mais également et beaucoup plus nettement par toutes les stations anglaises se trouvant entre la station émettrice et l'objectif. La parade à adopter était d'une simplicité biblique, encore fallait-il y penser. Recevant les signaux retour de l'avion, les Britanniques n'avaient qu'à leur redonner la fréquence des signaux émis par la station allemande et à les envoyer tels quels à l'avion ce qui était le moyen le plus sûr pour l'égarer. Il y avait donc une confusion assez semblable à ce qui se produit lorsque les haut-parleurs d'une salle sonorisée sont tellement puissants que les sons qui leur viennent du micro et qu'ils répercutent, sont repris par le micro et leur sont renvoyés une seconde fois en même temps que la suite du programme. Cela s'appelle l'effet Larsen. Dans le cas présent du brouillage par les Britanniques, les mesures de distances étaient complètement fausses et rendaient le système Y-Gerät totalement inopérant.

Lorsque les Allemands mirent Y-Gerät en service en janvier 1941, les Britanniques adoptèrent un brouillage en douceur et ce fut pour la Luftwaffe un fiasco si total qu'il fallut tout arrêter. Ainsi la contre-mesure Domino avait, dès le premier essai, contré Y-Gerät dénommé Bénito en souvenir de Mussolini. Les Allemands, pour contrer à leur tour firent fonctionner, tout ou en partie, les faisceaux Y-Gerät sur des fréquences différentes de sorte que les Anglais ne savaient pas toujours lequel était utilisé réellement. Brouiller tout l'ensemble était difficile mais avec le temps ils multiplièrent les stations de brouillage. Celui-ci fut réalisé non seulement sur la mesure de distance mais en plus, sur la fonction contrôle tactique. Les Britanniques envoyèrent de faux ordres de largage et les pilotes se mirent à douter de toutes les instructions qu'ils recevaient. Pour limiter ces intrusions il fallut authentifier les ordres. Au brouillage réel s'ajouta un phénomène de brouillage psychologique qui venait admirablement compléter le premier.

La Luftwaffe dut renoncer à l'utilisation offensive du système Y-Gerät mais il ne fut pas abandonné pour autant. Le littoral de la Manche et de la Mer du Nord furent, comme pour Knickebein et X-Gerät, les lieux privilégiés pour y implanter les stations émettrices YGerät. Celles-ci perdurèrent jusqu'en 1944 et la Luftwaffe les utilisa jusqu'au jour J. En Allemagne la défense aérienne du Reich adopta YGerät comme moyen de radionavigation pour la
chasse de nuit. Jusqu'en 1943 les stations à l'intérieur du Reich étaient à l'abri du brouillage mais ce ne fut que partie remise et tout recommença lors de la montée en puissance de l'offensive aérienne stratégique sur l'Allemagne.

A la veille de la Bataille d'Angleterre, la Luftwaffe disposait d'une remarquable infrastructure de moyens de radionavigation permettant le contrôle tactique des missions de bombardement. La technologie retenue était le système des faisceaux dirigés qui avait pour conséquence de créer une architecture de faisceaux radioélectriques invisibles, certes, mais dont l'existence était réelle ce qui les rendait vulnérables. En outre cette méthode de navigation tactique était entièrement dépendante d'une lourde infrastructure au sol et son efficacité reposait sur une organisation opérationnelle (coordination et synchronisme) de grande qualité. On connaît les défaillances notoires de la Luftwaffe dans la transmission des ordres par

Emetteur Y-Gerät Wotan II à Jobourg
radiotélégraphie qui révélèrent beaucoup de caractéristiques techniques aux Britanniques. Très rapidement la RAF sut adapter les contremesures qui perturbèrent gravement l'utilisation des systèmes ; ce fut la guerre des faisceaux selon l'expression employée par R. V. Jones qui fut l'une des chevilles ouvrières dans cet étonnant combat. A la mi-mai 1941, à la fin du Blitz, les Allemands sont conscients qu'ils doivent mettre en œuvre d'autres systèmes fondés sur des principes différents. Mais les faisceaux, s'ils avaient fini par livrer leurs secrets, étaient loin d'avoir livré leur dernière bataille. Les Allemands en étaient convaincus et leur première réaction aux mesures de brouillage fut de multiplier les émetteurs dans l'espoir qu'on ne pourrait jamais les brouiller tous et en même temps. Les systèmes à faisceaux ne furent nullement démantelés bien au contraire, ils fonctionnèrent pendant toute la guerre. Bien que pris dans le terrible engrenage des opérations du front de l'Est, les Allemands comptaient bien
porter un coup mortel aux Britanniques une fois qu'ils en auraient fini avec les Russes. L'importante infrastructure des systèmes à faisceaux dirigés destinée à l'offensive future sur les îles Britanniques était toujours opérationnelle en juin 1944 et tout particulièrement en Normandie.

Les nouveaux systèmes de radionavigation de 1941 à 1945

Les systèmes omnidirectionnels

Le réseau d'infrastructure de l'aviation civile internationale avait adopté quelques années avant la guerre l'usage des balises radioélectriques pour la navigation aérienne. Servant de radiophares elles émettaient, sur une fréquence donnée, un signal caractéristique en Morse reçu par les récepteurs de bord. Le pilote recevait une indication visuelle de direction, en fait un cap à prendre, pour se diriger vers la balise écoutée. En positionnant deux balises sur le récepteur de bord on obtient deux lignes de position se recoupant en un point-sol identifiable sur une carte de navigation. Toujours utilisé sous le nom de radiocompas ce système n'avait qu'une utilisation opérationnelle restreinte au survol d'un territoire ami et n'était nullement un moyen de navigation offensif.

Les systèmes à grille

Décryptant sans cesse les messages chiffrés par Enigma, les Britanniques découvrirent en 1943 l'existence d'un puissant émetteur allemand installé à Lugo au nord-ouest de l'Espagne. Il s'agissait d'un nouveau système connu sous le nom Elektra-Sonne qui émettait un large faisceau en direction du Golfe de Gascogne. Une deuxième station, installée dans la région de Brest, émettait un faisceau semblable en direction du sud-ouest. En se croisant au-dessus de l'Atlantique les deux faisceaux formaient une sorte de grille à l'intérieur de laquelle sous-marins et bombardiers à long rayon d'action pouvaient se localiser sans erreur possible.

Elektra émettait un faisceau dirigé d'une largeur de 10 degrés en moyenne fréquence; en utilisant à dessein cette bande de fréquences les signaux étaient faibles et difficiles à détecter :

- sur 600 KHz la portée sur mer était de 1700 kilomètres et de 800 kilomètres sur terre;
- en descendant à 300 KHz la portée augmentait sensiblement jusqu'à 2000 kilomètres au-dessus de la mer et 1200 kilomètres sur terre.

Sonne émettait un faisceau tournant d'une largeur de 20 degrés; les fréquences utilisées s'étalaient de 270 à 330 KHz et la portée était identique à celle d'Elektra.

En combinant les deux systèmes les Allemands disposaient d'un ensemble simple et relativement discret, utilisable aussi bien par la Luftwaffe que par la Kriegsmarine. Un pilote désireux de se positionner n'avait besoin que de la carte spécialement établie, d'un récepteur de bord classique et d'un bon chronomètre. La présence de balises Sonne en Espagne devait causer quelques embarras diplomatiques au gouvernement espagnol pendant la durée du conflit. Ceci explique en partie pourquoi les Britanniques ont mis deux ans pour élucider ce mystérieux système. Par la suite, loin de chercher à le brouiller, ils l'utilisèrent au profit de leurs avions de patrouille maritime chargés de traquer les sous-marins de l'amiral Dœnitz, bel exemple de pragmatisme et de technique de déception. La paix revenue l'aviation civile le préféra à d'autres systèmes jugés plus compliqués. Ainsi des émetteurs baptisés Consol, mais très proches d'Elektra-Sonne, sont toujours en service à la satisfaction des navigateurs maritimes et aériens disposant de moyens rustiques.

Les systèmes hyperboliques

Avec Elektra-Sonne on en était toujours aux systèmes de faisceaux plus ou moins orientés et il fallait sortir des sentiers battus et surtout connus de l'adversaire. Pendant toute la durée du conflit les recherches allemandes furent intensives dans ce domaine. Elles s'orientèrent dans trois directions :

- copie de matériels britanniques et américains, ce qui fut le cas pour la GEE (Ground Electronic Environnement) et le LORAN qui étaient les systèmes de navigation hyperboliques alliés;
- adaptation à de nouvelles fonctions d'équipements modernes déjà destinés à d'autres emplois ; on verra plus loin ce que furent ces systèmes hybrides, radar-navigation et IFFnavigation;
- développement d'ensembles totalement nouveaux.

Dans le domaine restreint des systèmes hyperboliques, les Allemands adoptèrent le système anglais GEE opérationnel en 1942 et utilisé par les bombardiers de la RAF. La GEE nécessitait trois stations implantées en Angleterre émettant des signaux synchronisés identifiables. A la réception de ces signaux, le navigateur du bombardier calculait la position
exacte de l'avion en partant de l'ordre d'arrivée des signaux, autrement dit en se situant par rapport aux trois stations. Il suffisait de comparer les différences de phases des stations prises deux par deux. Pour deux stations il trouvait une ligne de position représentant le lieu géométrique de mếme différence de phases et qui est toujours une hyperbole. L'intersection de deux hyperboles déterminait une position au sol. Une carte spéciale de navigation était nécessaire sur laquelle étaient imprimées les trois familles d'hyperboles possibles engendrées par les trois stations. Il est fort probable que les Allemands finirent par s'emparer d'une de ces cartes dans les épaves des avions abattus ou bien découvrirent-ils le système grâce à leurs écoutes électroniques ? Presque certainement ce furent ces deux raisons. Les fréquences GEE se situaient dans la bande de 20 à 85 MHz ce qui limitait la portée et la précision en limite de cette dernière (300 km). La GEE n'était utilisable qu'au-dessus des limites occidentales du Reich. Ayant récupéré des récepteurs de bord dans les épaves d'avions britanniques abattus, les Allemands copièrent la GEE purement et simplement se contentant d'appeler les imitations Truhe et Boden Truhe (bahut et bahut au sol) mais celles-ci n'eurent guère le temps d'entrer en service.

Les nouveaux systèmes tactiques

Les systèmes que nous allons aborder étaient des ensembles totalement nouveaux ou bien encore le résultat d'une extension à de nouvelles fonctions d'équipements performants. Dans le cas de Y-Gerät nous avons décrit les différentes fonctions d'un système à vocation tactique. Il faut bien comprendre qu'il ne s'agissait pas seulement d'un moyen de radionavigation mais d'un système multifonctions. Dès l'automne 1941 et jusqu'à la fin de la guerre la Luftwaffe utilisa un nouveau système de navigation offensif à vocation tactique, le système Bernhard.

Bernhard était le nom code de l'émetteur au sol FuG-724 (Funk-Gerät) suivant la codification des matériels techniques de la Luftwaffe. Il s'agissait d'un monumental ensemble tournant souvent confondu par les Alliés avec un radar de défense aérienne ou de veille surface lointaine. Cet émetteur travaillait sur des fréquences déjà utilisées par Knickebein afin de mieux le camoufler, mais le principe était différent. Il n'y avait plus émission de faisceau, l'antenne en tournant assurait une couverture omnidirectionnelle immunisée dans une certaine mesure contre le brouillage électronique. L'avion pouvait recevoir une ou plusieurs stations Bernhard mais ne

Emetteur Bernhard implanté au Vicel près de Saint-Vaast-laHouge, juin 1944
© droits réservés
retransmettait plus ce qui lui évitait les inconvénients de Y-Gerät. Le récepteur de bord, FuG120 Bernhardine de Siemens, était un matériel extrêmement avancé pour son époque. Un téléscripteur fournissait en permanence des informations tactiques et de navigation. Transmis de minute en minute le message codé donnait :

- l'indicatif de la station émettrice ;
- le relèvement de l'avion par rapport à la station, en fait, par transformation automatique du relèvement par rapport à une ou plusieurs stations;
- la position, l'altitude et le cap de l'ennemi à intercepter.

Equipement idéal pour équiper les chasseurs de nuit et les bombardiers, les performances du système étaient excellentes, portée de 400 kilomètres à 5000 mètres et une précision du relèvement à plus ou moins 0,5 degré. A partir de 1942 Bernhard remplaça Y-Gerät et cinq stations furent implantées en France jusqu'en septembre 1944 à Reims, Arcachon, Chartres, Brest-Cizun et la station de Saint-Vaast-laHougue en Normandie. Cette dernière construction était en fait implantée à 3 kilomètres à l'ouest de La Pernelle dont il ne reste plus que le rail circulaire permettant à l'ensemble de tourner.

Schéma de fonctionnement du système Freya-EGON utilisé pendant le Baby-Blitz, janvier-mars 1944 © droits réservés

Système EGON : EGON est l'acronyme de Erstling Gemse Offensive Navigation. Erstling était le nom code donné au système d'identification ami/ennemi, l'équivalent de l'IFF des Britanniques; Gemse (chamois ou isard) était également le camouflage de la mission de pénétration, mission offensive. Autrement dit $E G O N$ traduisait le concept d'un moyen de navigation tactique par utilisation de l'IFF. Nous avons déjà eu l'occasion de parler de l'IFF (Identification Friend or Foe) moyen d'identification que les Britanniques mettaient en œuvre depuis 1939. Curieusement, ce n'est qu’à partir de 1942 que la Luftwaffe adopte cet équipement, mais en fait, l'arrivée de ce dernier dans les formations traduit bien un tournant dans la conduite de la guerre aérienne à l'ouest. En 1942, la Luftwaffe était sur la défensive et il était vital pour elle d'identifier l'ami de l'ennemi dans les opérations en cours. L'équivalent allemand de l'IFF était l'équipement de bord FuG25 A Erstling, transpondeur de bord qui équipa tous les avions de combat à partir de 1942 et les radars de veille et de conduite de la chasse dans
les stations de défense aérienne (Freya, Mammut, Wassermann, Würzburg-Riese etc...). Pour expliquer comment $E G O N$ fonctionnait sommairement, imaginons un radar de veille Freya pointant son faisceau en direction d'une cible déterminée à l'avance. Le pilote du bombardier chargé de neutraliser l'objectif, ayant branché son IFF Erstling pour être identifié comme ami, était guidé sur le faisceau Freya en obéissant aux instructions verbales que lui donnait le contrôleur au sol. Le faisceauétant rallié, le dialogue pilote-contrôleur s'arrêtait et était remplacé par un dialogue Freya/Erstling directement par transmission de données à partir d'un point convenu (point initial) ; le contrôleur qui avait une vision globale de la situation actionnait un calculateur au sol lequel intégrait les données transmises par l'IFF de bord (cap, altitude, vitesse) et le top de largage était transmis automatiquement (voir figures et situations tactiques dans la partie iconographie). La portée du système $E G O N$ était fonction de la détection du radar de guidage mais il suffisait d'obtenir la détection IFF, laquelle n'est jamais qu'un écho renforcé donc visible à plus grande distance que l'écho réel. Cette méthode de guidage à distance des bombardiers par exploitation de leur propre IFF était originale pour l'évidente raison que personne ne savait brouiller efficacement un transpondeur. Cette méthode, avec diverses possibilités (voir schémas tactiques), fut utilisée en janvier 1944 durant le Baby-Blitzà partir des stations normandes de la Luftwaffe. A l'origine la mission de ces stations étaient exclusivement défensive, $E G O N$ leur permit d'accomplir une mission offensive, celle du guidage tactique sous contrôle serré par IFF.

Ce fut une très mauvaise surprise pour les Britanniques car le Blitz de 1941 était oublié. Qui plus est, $E G O N$ autorisait une grande variété de combinaisons ; les bombardiers n'étaient pas tenus de suivre uniquement le faisceau du radar Freya, ou autres d'ailleurs, dont la portée était limitée à 100 kilomètres à basse altitude et à 250 kilomètres à haute altitude. On vit se réactiver le grand orchestre constitué par les systèmes à faisceaux, Knickebein, X-Gerät, Y-Gerät dont les activités n'avaient jamais cessé et qui dans un bel ensemble reprirent du service. Il était possible de brouiller quelques faisceaux mais pas tout un ensemble, aussi vaste et en même temps, car les Allemands les activaient au même moment. Fort heureusement pour les Alliés, la RAF et l'aviation américaine disposaient de suffisamment de chasseurs tout temps et l'offensive fut brisée, disons qu'elle s'essouffla faute de moyens suffisants. La Luftwaffe de 1944 n'était plus celle de juin 1940 .

Pendant son offensive à l'ouest, en mai 1940 et durant tout l'été, de la Bataille d'Angleterre, la Luftwaffe avait fondé une bonne part de l'efficacité de son aviation tactique sur des systèmes à faisceaux dirigés conduisant à une méthode de navigation entièrement contrôlée du sol. S'ajoutant à une infrastructure très importante, l'existence physique des faisceaux fut à l'origine de leur découverte par la RAF et de leur neutralisation. Cette nouvelle manière de combattre l'adversaire, la guerre électronique, allait prendre une importance capitale pendant tout le conflit.

La longue traque des systèmes à faisceaux dirigés, à l'automne et durant l'hiver 1940, avait accordé aux Britanniques un répit inespéré qui leur permettra ensuite d'orienter leurs efforts sur le réseau radar de défense aérienne du Reich. Loin d'abandonner toute idée de revanche, les Allemands développèrent l'infrastructure de ces réseaux principalement en France et de plus, mirent au point des systèmes entièrement nouveaux tenant compte des leçons du passé qui eurent pour caractéristiques essentielles d'être des équipements à vocation multifonctions: systèmes de communication/navigation. Il faut bien noter que les performances étaient excellentes et que la conception générale en était futuriste car nombre de matériels allemands de radionavigation seront adoptés par les civils et militaires la paix revenue. L'imposante infrastructure liée à l'existence de l'ensemble des réseaux était toujours opérationnelle en juin 1944 et tout particulièrement en Normandie. Elle a joué un rôle important avant et pendant Overlord ce qui prouve l'importance stratégique qu'apportait le glacis français dans la défense du Reich.

Schéma allemand de différents types possibles d'attaques guidées par Freya-EGON
© droits réservés

Annexe

L'implantation de Knickebein à l'ouest

Station			
K1	Kleep	(S./Stavanjer - Norvège)	Emetteur à petite antenne
K2	Bredstett-Stolberg	(N.-O./ Tondern Schlesw - Hollstein)	Emetteur à grande antenne ${ }^{1}$
K3	Julianadorp	(S./Den Helder - Pays-Bas)	Emetteur à petite antenne
K4	Kleve	(N./Essen - Allemagne)	Emetteur à grande antenne ${ }^{1}$
K5	Bergin op Zoom	(S./Rotterdam - Pays-Bas)	Emetteur à petite antenne
K6	Mont Violette	(S./Boulogne-sur-Mer - France)	Emetteur à petite antenne
K7	Greny	(N.-O./Dieppe - France)	Emetteur à petite antenne
K8	Mont Pinçon	(S./Caen - France)	Emetteur à petite antenne
K9	Beaumont-la-Hague ${ }^{2}$	(O./Cherbourg - France)	Emetteur à petite antenne Puissance 10 kW
K10	Sortosville-en-Beaumont	(S.-O./Cherbourg - France)	Emetteur à petite antenne Complément K9
K11	Plestin-les-Grèves	(N.-O./Morlaix - France)	Emetteur à petite antenne
K12	Lörrach	(E./Lörrach-Baden - Allemagne)	Emetteur à grande antenne ${ }^{1}$
K13	Noto	(Sicile - Italie)	Emetteur à petite antenne non achevé

[^0]| X1 | DONAU | Julianadorp Den Helder (N/Amsterdam - Pays-Bas) | Faisceau principal utilisé comme leurre |
| :---: | :---: | :---: | :---: |
| X2 | ELBE | Audembert (près du Cap Gris Nez S.-O. de Calais France) | Faisceau de flanquement ${ }^{\text {er }}$ signal |
| X3 | ODER | Audembert (près du Cap Gris Nez S.-O. de Calais - France) | Faisceau de flanquement $2^{\text {c }}$ signal |
| X4 | RHEIN | Audembert (près du Cap Gris Nez S.-O. de Calais France) | Faisceau de flanquement 3 ' signal |
| X5 | WESER | Embouchure d'Encalgrain (près du Cap de la Hague O/Cherbourg - France) | Faisceau principal Portée moyenne |
| X6 | SPREE | Embouchure d'Encalgrain (près du Cap de la Hague O/Cherbourg - France) | Faisceau principal Grande portée |
| X7 | ISAR | Embouchure d'Encalgrain (près du Cap de la Hague O/Cherbourg - France) | Faisceau principal (réserve) Portée moyenne |
| X8 | ? | Pointe de Primel (N/Morlaix - France) | Faisceau principal utilisé comme leurre |

L'implantation de Y-Gerät/Wotan II à l'ouest

St	dicatif		lantation	Mission
Y1	-	Udoslandhaug/Forns	(O./Stavanger - Norvège)	1943-44 Essais de station relais et guidage des vols de reconnaissance lointaine
Y2	BERTA	Cassel	(S.-O./Calais France)	1940-44 Station opérationnelle
Y3	CICERO	Paluel - Conteville	(N.-O./Fécamp - France)	1940-44 Station opérationnelle
Y4	DORA	Saint-Martin-Contevil	le (N.-O./Fécamp - France)	1942 Station opérationnelle en renfort de CICERO
Y5	-	Le Bourget, Poix, Cha	rtres et Montdidier	Moyens de radionavigation assurant le retour des raids
Y6	GUSTAV	Marquise Boursin	(N.-O./Boulogne - France)	1942 Station opérationnelle en renfort de BERTA
Y7	ANTON	La Hague	(O./Cherbourg - France)	1940-44 Station opérationnelle
Y8	EMIL	La Feuille	(S.-O./Morlaix - France)	1940-44 Station à vocation de leurre
Y9	?	Aumale	(O./Poix - France)	Station d'essais utilisée en OPS une seule fois suite au brouillage britannique en janvier 1941

L'implantation de Elektra-Sonne à l'ouest

Station	Implantation faisceau Elektra		Orientation Elektra-Sonne	Fréquences
E1/S1	Stavanger	(Norvège)	247°	$297 / 319 \mathrm{kHz}$
E2/S8	Husum	(Schleswig Hollstein - Allemagne)	270°	$481 / ? \mathrm{kHz}$
E3/S3	Bayeux	(O./Caen- Normandie France)	33°	$297 / 306 \mathrm{kHz}$
E4	Morlaix	(Bretagne France)	325°	291 kHz
S5	Petten	(Pays-Bas)	275°	316 kHz
S15	Lugo	(N./Espagne)	269°	303 kHz
S16	Séville	(S./Espagne)	263°	311 kHz
S18	Saint-Martin-de-Crau	(S./France)	190°	297 kHz
S19	Beauvais	(Picardie France)	320°	307 kHz
S20	Andenes	(N./Norvège)	45°	269 kHz

Bibliographie :

Archives du Bundesarchiv-Militärchive (Freiburg im Breisgau - Allemagne)

- RL2-V/5 : carte au $1 / 500000^{e}$ de l'infrastructure de la Luftwaffe le 24 juin 1944 ;
- M442/n ${ }^{\circ} 38$ 121-Teil 2 : Kriegstagebuch des

Marinenabschnitts-kommandanten (Normandie) ;

- M442/n ${ }^{\circ} 38122$: Kriegstagebuch der

Ortungsmeldestelle (Cherbourg - Normandie).

Foreign Military Studies

Travaux entrepris à partir des FMS par des historiens allemands du MGFA - (Freiburg - Allemagne), sous la rubrique Studiengruppe Geschichte des Krieges (Karlshruhe) :

- LW-6 : Der Einsatz der deutschen Luftwaffe gegen die Allierten im Westen - General-major von Grabmann ;
- LW-11-4 : Vorbereitung im Westen zur Abwehr einer Invasion 1943 - Flugmeldienst 1943, Blindnavigation 1943 ;
- LW-11-5 : Luftangriffauswirkungen bei tage - 6 juni 1944.

Militärgeschichtlichen Forchungsamt (Freiburg)

Travaux d'historiens allemands consultés au MGFA (Militärgeschichtlichen Forchungsamt) :

- Geschichte der Luftnachrichtentruppe - Karl Otto Hoffmann ;
- Entscheidung im Westen 1944 - Dieter Ose ;
- Wehrwissenschaftliche Rundschau - Karl von

Gundelach ;

- Deutscher Militarischer Vertreter - SHAPE ;
- Invasion im der Normandie 1944 - Dr. Ekkehart Guth.

Livres

R. V. Jones, The most Secret War.

Len Deighton, The true story of the battle of Britain, éd. Triad Graften.
Jean Cuny, la Chasse de nuit allemande, 1939-1945, éd. EPA.
Horst Boog, Die deutsche Luftwaffenführung, 19351945, éd. DVA.
Frank Reuter, Funkmess, Westdeutscher Verlag OPLADER 1973.
Fritz Trenckle, Deutsche Ortung u. Navigationsanlagen, 1939-1945, éd. Motorbuch Verlag, Stuttgart.

[^0]: (1) Seuls les émetteurs K implantés en Allemagne avaient d'immenses antennes en raison de la distance à parcourir. En revanche, les émetteurs du littoral étaient dotés d'antennes plus petites mais constituaient des ensembles encore imposants. Il faut préciser que le faisceau engendré par chaque station pouvait servir ou de faisceau directeur ou bien de faisceau de flanquement pour déterminer l'objectif. L'implantation de l'ensemble était telle que la moitié sud de l'Angleterre était totalement prise en tenaille par les faisceaux K.
 (2) Les Allemands ont utilisé le système K pendant la bataille de France, mai-juin 1940, mais dès le mois d'août 1940 ils avaient déjà suffisamment de stations pour attaquer l'Angleterre. K le premier émetteur Knickebein fut repéré en septembre 1940 par la RAF. Les coordonnées géographiques en étaient $49^{\circ} 40 \mathrm{~N}$ et $01^{\circ} 51 \mathrm{~W}$; c'était celui de Beaumont-la-Hague K9 dans le Cotentin.

